3.168 \(\int \frac{(A+C \cos ^2(c+d x)) \sec ^2(c+d x)}{(b \cos (c+d x))^{2/3}} \, dx\)

Optimal. Leaf size=93 \[ \frac{3 A b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/3}}-\frac{3 (2 A+5 C) \sin (c+d x) \sqrt [3]{b \cos (c+d x)} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};\cos ^2(c+d x)\right )}{5 b d \sqrt{\sin ^2(c+d x)}} \]

[Out]

(3*A*b*Sin[c + d*x])/(5*d*(b*Cos[c + d*x])^(5/3)) - (3*(2*A + 5*C)*(b*Cos[c + d*x])^(1/3)*Hypergeometric2F1[1/
6, 1/2, 7/6, Cos[c + d*x]^2]*Sin[c + d*x])/(5*b*d*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.101386, antiderivative size = 93, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {16, 3012, 2643} \[ \frac{3 A b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/3}}-\frac{3 (2 A+5 C) \sin (c+d x) \sqrt [3]{b \cos (c+d x)} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};\cos ^2(c+d x)\right )}{5 b d \sqrt{\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(b*Cos[c + d*x])^(2/3),x]

[Out]

(3*A*b*Sin[c + d*x])/(5*d*(b*Cos[c + d*x])^(5/3)) - (3*(2*A + 5*C)*(b*Cos[c + d*x])^(1/3)*Hypergeometric2F1[1/
6, 1/2, 7/6, Cos[c + d*x]^2]*Sin[c + d*x])/(5*b*d*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{(b \cos (c+d x))^{2/3}} \, dx &=b^2 \int \frac{A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{8/3}} \, dx\\ &=\frac{3 A b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/3}}+\frac{1}{5} (2 A+5 C) \int \frac{1}{(b \cos (c+d x))^{2/3}} \, dx\\ &=\frac{3 A b \sin (c+d x)}{5 d (b \cos (c+d x))^{5/3}}-\frac{3 (2 A+5 C) \sqrt [3]{b \cos (c+d x)} \, _2F_1\left (\frac{1}{6},\frac{1}{2};\frac{7}{6};\cos ^2(c+d x)\right ) \sin (c+d x)}{5 b d \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.675028, size = 103, normalized size = 1.11 \[ \frac{6 A \tan (c+d x) \sqrt [6]{\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )}-(2 A+5 C) \sin \left (2 d x-2 \tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac{1}{2},\frac{5}{6};\frac{3}{2};\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{10 d (b \cos (c+d x))^{2/3} \sqrt [6]{\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/(b*Cos[c + d*x])^(2/3),x]

[Out]

(-((2*A + 5*C)*Hypergeometric2F1[1/2, 5/6, 3/2, Cos[d*x - ArcTan[Cot[c]]]^2]*Sin[2*d*x - 2*ArcTan[Cot[c]]]) +
6*A*(Sin[d*x - ArcTan[Cot[c]]]^2)^(1/6)*Tan[c + d*x])/(10*d*(b*Cos[c + d*x])^(2/3)*(Sin[d*x - ArcTan[Cot[c]]]^
2)^(1/6))

________________________________________________________________________________________

Maple [F]  time = 0.352, size = 0, normalized size = 0. \begin{align*} \int{ \left ( A+C \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2} \left ( b\cos \left ( dx+c \right ) \right ) ^{-{\frac{2}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(2/3),x)

[Out]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(2/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(2/3),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/(b*cos(d*x + c))^(2/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{1}{3}} \sec \left (d x + c\right )^{2}}{b \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(2/3),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(1/3)*sec(d*x + c)^2/(b*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**2/(b*cos(d*x+c))**(2/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac{2}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(2/3),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/(b*cos(d*x + c))^(2/3), x)